United States Patent

US009448901B1

(12) (10) Patent No.: US 9,448,901 B1
Aslam et al. 45) Date of Patent: Sep. 20, 2016
(54) REMOTE DIRECT MEMORY ACCESS FOR 2014/0143364 Al* 52014 Guerin ... GOG6F 1%1975?5
ga%%ﬁgﬁ%ig%;{;&%?;;&i% éAS OR 2014/0244578 Al* 82014 Winkelstracter GO6F 11/1435
707/617
INTERFACE 2014/0365816 Al 12/2014 Antony
N !
(71) Applicant: International Business Machines 2015/0121134 AL* 422015 Wipfel oo G06F711%/269241‘
Corporation, Armonk, NY (US) 2015/0227325 Al* 82015 Rupanagunta GOSF 3/0613
. ; : 710/16
(72) Inventors: ?g‘:;al;‘::;ag SS‘:l‘:lef:rsylag’C‘Ag?g). Ao 2015/0331722 AL* 11/2015 Magro GOGF 9/45533
3 . 3 3 3 718/1
Wan, Markham (CA) 2016/0062944 Al* 3/2016 Xiongc....... HO4L 51/18
o . . . 709/212
(73) Assignee: IC“ter“at‘t‘,’“al B“SHL‘LSSIEIV[;E{‘J‘Q‘;S 2016/0085647 Al* 3/2016 Ramasubramaniam GOGF 11/2033
orporation, Armonk,
(*) Notice: Subject to any disclaimer, the term of this 714/4.12
patent is extended or adjusted under 35 2016/0103744 Al* 4/2016 Antony GOGF 3/065
714/4.12
U.S.C. 154(b) by 0 days.
(21) Appl. No.: 14/969,752 OTHER PUBLICATIONS
(22) Filed: Dec. 15, 2015 Mell et al., “The NIST Definition of Cloud Computing,” National
Institute of Standards and Technology, Sep. 2011, p. 1-3, Special
(51) Imt.CL Publication 800-145
GOGF 11/00 (2006.01) lication §00-145.
GO6F 11/20 (2006.01) * cited by examiner
GO6F 15/173 (2006.01)
rimary Examiner — Marc Duncan
(52) US.CL Primary Exami Marc D>
CPC GO6F 11/2094 (2013.01); GO6F 15/17331 (74) Attorney, Agent, or Firm — Robert C. Bunker; Steven
(2013.01); GOGF 2201/805 (2013.01) C. Kurlowecz; Anthony V. S. England
(58) Field of Classification Search (57) ABSTRACT
CPC v GOGF 11/2094; (2)06 6FF1252/(1)Z/383015’ According to one exemplary embodiment, a method for
g lication file f) b hi remote direct memory access failover is provided. The
ce application file for comP ete search history. method may include determining an RDMA operation will
(56) References Cited be performed. The method may include determining an
available node. The method may include sending a data
U.S. PATENT DOCUMENTS element to the available node based on the RDMA operation
7843907 Bl 112010 Abou-E fal being an insert. The method may include receiving a pointer
7'953.085 B2 52011 Ch;)rlll,é ;:1 iﬁa ctak in response to sending the insert, whereby the pointer
8.023.417 B2 9/2011 Blackmore et al. corresponds o a memory range. The method may include
8,954,785 B2 2/2015 Fox et al. storing the pointer. The method may include retrieving the
9,229,901 B1* 1/2016 Nesbitccc.c..... GO6F 15/17331 pointer based on the RDMA operation being an update, a
2005/0216552 Al* 9/2005 Fineberg GOGF 12/0284 read, or a delete. The method may include sending the
2009/0164749 Al* 62009 England G067Fogggg pointer, the data element to the available node based on the
AN ot 711206 RDMA operation being an update. The method may include
2012/0221803 AL* 82012 Stabrawa GOGF 3/0611 sending the pointer and the RDMA opeyatlon to the available
711/154 node based on the RDMA operation being a read or a delete.
2014/0047263 Al* 2/2014 Coatney GOGF 11/2023
714/4.11 19 Claims, 10 Drawing Sheets

Client Determines
That RDMA
Operation Wit Be
Perfionmed

302 |

304~

296

8end Peinier Ang
~ Data T
Defermned Seaver

U.S. Patent

100

Sep. 20, 2016

Sheet 1 of 10

US 9,448,901 B1

Processor

104

Date Storags
Device 106

fo oftwar
Program |
108

RDMA Program

110s

ommunication Network
Communication Networl

11é

Database
114a

|{ RDMA Program

1160

Daiabase
114b

)

Server 112b

[REMA Program)

140c

FIG. 1

U.S. Patent

Sep. 20, 2016 Sheet 2 of 10

Master And Slave
Map To Same
Virtual Memory
Address

¥

Master Registers
Memory At Virtual
Memory Address

¥

296\

Master Generates
Access Key

k4

298\\“

Master Forwards
Key To Slave

¥

Slave Performs
Registration Af
Same Virtual
Memory Address

FIG. 2

200

US 9,448,901 B1

U.S. Patent

302 |

{Client Determines
That RDMA
Operation VWill Be
Performed

h 4

Detarming
Available Server

306~

<L Operation &An

is

oo 158

308~ |

Send Data To
Distermined Server

¥

310'\\\

Receive And Siore
Pointar

Sep. 20, 2016

Sheet 3 of 10

Look Up Pointer

US 9,448,901 B1

300

f3’¥2

3t~

< Operation An

s

Yes

Send Pointer And
Data To
Determined Server

B ND

k4

Send Pointer To
Determined Server

3‘!8\‘\

FIG. 3

US 9,448,901 B1

Sheet 4 of 10

Sep. 20, 2016

U.S. Patent

SSUBPY

IBNLIA WO BIR0
SBACUIEN JOISBHY

f

oEY

SRBIPPY
BALIA WOL4
BI2(] SPUSS IBISRN

-3

S50UPPY
BNUIA WOl Bl

SOABLIEY OISRy

peay v 1sanhoy
WINGY S~

wco_wmhmow&, .,

0Z¥

S

P "Old

SERIPPY [EAMIA
BluRg Iy voneisdp
SULIOPD BABIS

A

8ARIS 04 1sanbay

(444

G

218 MON SIIAA

SpIRMIO] JOISEI

ziy

B

JUBND O Jejuiog
SpUBS JBISEI

&

4

2

N

N

yey

EIB(] PIC PAOLUSY

{9713 BiRg

wcommgmamu, o

¢ oepdn uy Jsanboy

~. YINCY 8-

IO 5 84S R0 SLe”

I/Imw«.

-3

SSBILY [ENRHA
Y uoheisd(pesuy
SULIOUS SIS

8

1344 Aowisiy
SBO0|N JoIsely

Hasy] uy senbay

YNGR 5]
134 .

isenbey wisyD
SEARDEY JEISEN

wcoamhmgmv. o,

POy

0d¥

US 9,448,901 B1

Sheet 5 of 10

Sep. 20, 2016

U.S. Patent

SERIPPY
[eniiiA Wit gleg
SBADLLSY BARIS

f

929

SSSIPPY
RNHA U0
£je(] SpuUSS 2AB|S

8is

N

§ 'Old

gLs

N

BIEQ PIO SADWSY

WY O 4810
SPUES BABIS

X

SSOIPPY
{eriha 1ol4 Biedy

 pesy v isenbay

SOABLOY SABIS

SO

~._ VINCY 8

.waomwmhma_&. .

BleC MO SIUM

ON

A

Lonseed

~DIO 5 8215 BJEQ S,

ocommumg& S

..&mog: Uy 18onbay

~. VIO S

&

SSRUPPY {RMAA
1y ucnRiadl pasy;
SULDNB 8A8IQ J/smom

&

bis AICUIBIN
SBIEOOLY BABIS [T _ 508

SA

mcomm,_wg&, Ry
ussul Uy 1senbsy
YNGR S e

Pa%

(434

isanboy welyD
MDY BABIS 006

U.S. Patent Sep. 20, 2016 Sheet 6 of 10 US 9,448,901 B1

600

606

FIG. 6A

6804

U.S. Patent Sep. 20, 2016 Sheet 7 of 10 US 9,448,901 B1

600

606

FIG. 6B

604

US 9,448,901 B1

Sheet 8 of 10

Sep° 20, 2016

U.S. Patent

8Z6

IH0sEIan

906w’

(Hu

US 9,448,901 B1

Sheet 9 of 10

Sep. 20, 2016

U.S. Patent

8 Old

US 9,448,901 B1

Sheet 10 of 10

Sep. 20, 2016

U.S. Patent

6 'Old
ww
UM LACS ONY mm<>>mm<ﬁ

€9 29 o \\\
Qm

NOI (_,<N3<Dhmm>

y /

/
— /.

ANIWIOVNYIN Y

/ /

o J ow /)
LYY/
mm<o,§m0>>\\
ya \ 7 7/
\\ 06 \\ 26 \\\\ V6 \\

US 9,448,901 B1

1
REMOTE DIRECT MEMORY ACCESS FOR
HIGH AVAILABILITY NODES USING A
COHERENT ACCELERATOR PROCESSOR
INTERFACE

BACKGROUND

The present invention relates generally to the field of
computing, and more particularly to remote direct memory
access.

High Availability (HA) is an important consideration in
Cloud data centers. HA allows for applications to have the
availability needed, independent of the operating system and
application, by providing failover protection against hard-
ware and operating system outages within a cloud informa-
tion technology (IT) environment.

SUMMARY

According to one exemplary embodiment, a method for
remote direct memory access (RDMA) failover is provided.
The method may include determining an RDMA operation
will be performed, whereby the RDMA operation is one of
an update operation, an insert operation, a read operation, or
a delete operation. The method may also include determin-
ing an available node based on determine that the RDMA
operation will be performed, whereby the available node is
a primary node or a secondary node. The method may then
include sending the determined RDMA operation and a data
element to the determined available node based on the
determined RDMA operation being the insert operation. The
method may further include receiving a remote pointer in
response to sending the insert operation, whereby the remote
pointer corresponds to a memory range mapped between the
primary node and the secondary node. The method may also
include storing the received remote pointer. The method may
then include retrieving the stored remote pointer based on
the determined RDMA operation being the update operation,
the read operation, or the delete operation. The method may
further include sending the stored remote pointer, the data
element, and the update operation to the available node
based on the determined RDMA operation being the update
operation. The method may also include sending the stored
remote pointer and the determined RDMA operation to the
available node based on the determined RDMA operation
being the read operation or the delete operation, whereby the
available node performs the sent RDMA operation, and
whereby the available node forwards the sent RDMA opera-
tion to the secondary node if the available node is the
primary node and the sent RDMA operation is the insert
operation, the update operation, or the delete operation.

According to another exemplary embodiment, a computer
system for remote direct memory access (RDMA) failover is
provided. The computer system may include one or more
processors, one or more computer-readable memories, one
or more computer-readable tangible storage devices, and
program instructions stored on at least one of the one or
more storage devices for execution by at least one of the one
or more processors via at least one of the one or more
memories, whereby the computer system is capable of
performing a method. The method may include determining
an RDMA operation will be performed, whereby the RDMA
operation is one of an update operation, an insert operation,
a read operation or a delete operation. The method may also
include determining an available node based on determining
that the RDMA operation will be performed, whereby the
available node is a primary node or a secondary node. The

10

15

20

25

30

35

40

45

50

55

60

65

2

method may then include sending the determined RDMA
operation and a data element to the determined available
node based on the determined RDMA operation being the
insert operation. The method may further include receiving
a remote pointer in response to sending the insert operation,
whereby the remote pointer corresponds to a memory range
mapped between the primary node and the secondary node.
The method may also include storing the received remote
pointer. The method may then include retrieving the stored
remote pointer based on the determined RDMA operation
being the update operation, the read operation, or the delete
operation. The method may further include sending the
stored remote pointer, the data element, and the update
operation to the available node based on the determined
RDMA operation being the update operation. The method
may also include sending the stored remote pointer and the
determined RDMA operation to the available node based on
the determined RDMA operation being the read operation or
the delete operation, whereby the available node performs
the sent RDMA operation, and whereby the available node
forwards the sent RDMA operation to the secondary node if
the available node is the primary node and the sent RDMA
operation is the insert operation, the update operation, or the
delete operation.

According to yet another exemplary embodiment, a com-
puter program product for remote direct memory access
(RDMA) failover is provided. The computer program prod-
uct may include one or more computer-readable storage
devices and program instructions stored on at least one of the
one or more tangible storage devices, the program instruc-
tions executable by a processor. The computer program
product may include program instructions to determine an
RDMA operation will be performed, whereby the RDMA
operation is one of an update operation, an insert operation,
a read operation or a delete operation. The computer pro-
gram product may also include program instructions to
determine an available node based on determining that the
RDMA operation will be performed, whereby the available
node is a primary node or a secondary node. The computer
program product may then include program instructions to
send the determined RDMA operation and a data element to
the determined available node based on the determined
RDMA operation being the insert operation. The computer
program product may further include program instructions
to receive a remote pointer in response to sending the insert
operation, whereby the remote pointer corresponds to a
memory range mapped between the primary node and the
secondary node. The computer program product may also
include program instructions to store the received remote
pointer. The computer program product may then include
program instructions to retrieve the stored remote pointer
based on the determined RDMA operation being the update
operation, the read operation, or the delete operation. The
computer program product may further include program
instructions to send the stored remote pointer, the data
element, and the update operation to the available node
based on the determined RDMA operation being the update
operation. The computer program product may also include
program instructions to send the stored remote pointer and
the determined RDMA operation to the available node based
on the determined RDMA operation being the read operation
or the delete operation, whereby the available node performs
the sent RDMA operation, and whereby the available node
forwards the sent RDMA operation to the secondary node if
the available node is the primary node and the sent RDMA
operation is the insert operation, the update operation, or the
delete operation.

US 9,448,901 B1

3

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

These and other objects, features and advantages of the
present invention will become apparent from the following
detailed description of illustrative embodiments thereof,
which is to be read in connection with the accompanying
drawings. The various features of the drawings are not to
scale as the illustrations are for clarity in facilitating one
skilled in the art in understanding the invention in conjunc-
tion with the detailed description. In the drawings:

FIG. 1 illustrates a networked computer environment
according to at least one embodiment;

FIG. 2 is an operational flowchart illustrating a process for
server-side preparation according to at least one embodi-
ment;

FIG. 3 is an operational flowchart illustrating a process for
client-side remote direct memory access (RDMA) opera-
tions according to at least one embodiment;

FIG. 4 is an operational flowchart illustrating a process for
handling RDMA requests at the master node according to at
least one embodiment;

FIG. 5 is an operational flowchart illustrating a process for
handling RDMA requests at the slave node according to at
least one embodiment;

FIG. 6A is a system block diagram illustrating a client/
master/slave node topology according to at least one
embodiment;

FIG. 6B is a system block diagram illustrating a client/
master/slave node topology during a failover event accord-
ing to at least one embodiment;

FIG. 7 is a block diagram of internal and external com-
ponents of computers and servers depicted in FIG. 1 accord-
ing to at least one embodiment;

FIG. 8 is a block diagram of an illustrative cloud com-
puting environment including the computer system depicted
in FIG. 1, in accordance with an embodiment of the present
disclosure; and

FIG. 9 is a block diagram of functional layers of the
illustrative cloud computing environment of FIG. 8, in
accordance with an embodiment of the present disclosure.

DETAILED DESCRIPTION

Detailed embodiments of the claimed structures and
methods are disclosed herein; however, it can be understood
that the disclosed embodiments are merely illustrative of the
claimed structures and methods that may be embodied in
various forms. This invention may, however, be embodied in
many different forms and should not be construed as limited
to the exemplary embodiments set forth herein. Rather, these
exemplary embodiments are provided so that this disclosure
will be thorough and complete and will fully convey the
scope of this invention to those skilled in the art. In the
description, details of well-known features and techniques
may be omitted to avoid unnecessarily obscuring the pre-
sented embodiments.

The present invention may be a system, a method, and/or
a computer program product at any possible technical detail
level of integration. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage

10

15

20

25

30

35

40

45

55

60

65

4

medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written in any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-

US 9,448,901 B1

5

ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted in the Figures. For example, two blocks shown in
succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions.

The following described exemplary embodiments provide
a system, method and program product for remote direct
memory access (RDMA) to High Availability (HA) nodes
having uniform virtual memory capabilities, such as a
Coherent Accelerator Processor Interface (CAPI). As such,
the present embodiment has the capacity to improve the
technical field of remote direct memory access by providing
a software-based solution to synchronize the virtual memory
addresses of a master node and a failover slave node in CAPI
capable systems. More specifically, when a client node
needs to perform an RDMA operation, the master node and
slave nodes may map potentially different physical memory
addresses to a common virtual memory address. Operations
requested by the client node may then be passed to the
master node and the master node may pass the operation to

10

15

20

25

30

35

40

45

50

55

60

65

6

the slave node so that the slave node may perform the same
operation. In the event that the master node is unavailable,
the client node’s RDMA operations may failover to the slave
node using the same virtual memory address as before since
the slave node’s memory was mapped to the same virtual
memory address as the master node.

As described previously, High Availability (HA) is an
important consideration in Cloud data centers. HA allows
for applications to have the availability needed, independent
of the operating system and application, by providing
failover protection against hardware and operating system
outages within a cloud information technology (IT) envi-
ronment.

Direct memory access (DMA) operations may be used to
complete high performance memory operations on remote
computers (e.g., servers) by allowing attached devices
within the computer (e.g., a network adapter) to directly
access designated portions of memory (i.e., pinned memory)
through hardware memory managers instead of using addi-
tional resources to traverse through the central processing
unit (CPU) and operating system (OS) to access memory.
DMA operations performed remotely (e.g., over a network
connection) from a first computer’s network adapter to a
second computer’s network adapter allows for high perfor-
mance remote direct memory access (RDMA) operations to
by performed.

Memory management hardware in traditional computer
architectures (e.g., Intel®-based system (Intel and all Intel-
based trademarks and logos are trademarks or registered
trademarks of Intel Corporation and/or its affiliates)) provide
physical memory access to attached devices (e.g., a network
adapter attached via a Peripheral Component Interconnect
Express (PCI-E) bus) for DMA/RDMA while providing
virtual memory addresses to applications and the OS. By
giving physical memory addresses for RDMA operations, it
may be difficult to synchronize RDMA operations to one
computer (e.g., master server node) and to a failover com-
puter (e.g., slave server node) since there may be a very high
probability that the physical memory addresses of both
computers will not be identical, even if the servers are
configured in the same way (e.g., due to variables, such as
bootstrap sequence, etc.). Thus, the performance advantages
of RDMA operations may be significantly reduced due to
additional resources that may be needed to have a client
node (i.e., a computer requesting an RDMA operation)
maintain different sets of memory addresses for each target
node (e.g., master node and one or more slave nodes for
failover that may handle the RDMA request) and/or custom
hardware may be needed to implement mirrored RDMA
operations across multiple computers when the memory
addresses being accessed through RDMA may not match.

Therefore, it may be advantageous to, among other things,
provide a way to provide for implementing High Availability
(HA) for one-sided RDMA through software that uses
existing RDMA adapters and allows a client node to access
a single memory address for RDMA operations regardless of
which server (i.e., node) carries out the operation.

According to at least one embodiment, when the client
node needs to perform an operation (i.e., RDMA operation),
the master node and the slave node may map their differing
physical memory locations to the same virtual memory
address (i.e., common virtual memory address). When a
client-node adapter sends a request to a master node, the
master node may register the memory at a virtual address
(e.g., 0x01). The master may then generate an access key
and forward the client’s request along with the access key
and virtual address (e.g., 0x01) to a slave node. Thereafter,

US 9,448,901 B1

7

the slave node may perform the same registration at the same
virtual memory address (e.g., 0x01) and store the access key
provided by the master node. Thus, the client may only need
to have one virtual memory address and one access key in
order to perform RDMA operations on all server nodes (i.e.,
master and slave HA servers).

When the client requests the master node to perform an
operation (e.g., insert, delete, update), the master node
forwards the request to the slave node that may then perform
the same operation against the slave node’s memory to
mirror the master node’s memory. Forwarding logic may be
implemented using firmware in the master node’s adapter
that forwards the request to the slave node before the
software running on the master node receives the request.
According to at least one other embodiment, a bump-in-the-
wire type field-programmable gate array (FPGA) module in
the master node adapter may forward the request to the slave
node before it is forwarded to the software running on the
maser node. According to yet another embodiment, the
master node’s adapter forwards the request to the software
running on the master node that performs the requested
operation and also forwards the request to the slave node.

If the master node becomes unavailable (e.g., hardware
malfunction, virtual machine crashes, etc.) the client node
adapter may failover to the slave node using the same virtual
address (e.g., 0x01) stored in the client node adapter’s table
that was used for the master node and use the same access
key provided by the master node when the client node
requested access to the master node’s memory.

Additionally, Coherent Accelerator Processor Interface
(CAPI) functionality provided by the servers may be used as
a translation mechanism to map physical memory to virtual
memory for attached devices (e.g., network adapters) in
order to perform RDMA operations using virtual memory
addresses instead of unique underlying physical memory
addresses.

Referring to FIG. 1, an exemplary networked computer
environment 100 in accordance with one embodiment is
depicted. The networked computer environment 100 may
include a computer 102 with a processor 104 and a data
storage device 106 that is enabled to run a software program
108 and a remote direct memory access (RDMA) program
110a. The networked computer environment 100 may also
include servers 112a and 1124 that are enabled to run an
RDMA program 1105 and 110c¢ that may interact with a
database 114a and 1145 and a communication network 116.
The networked computer environment 100 may include a
plurality of computers 102 and servers 112a and 1125. The
communication network may include various types of com-
munication networks, such as a wide area network (WAN),
local area network (LLAN), a telecommunication network, a
wireless network, a public switched network and/or a sat-
ellite network. It should be appreciated that FIG. 1 provides
only an illustration of one implementation and does not
imply any limitations with regard to the environments in
which different embodiments may be implemented. Many
modifications to the depicted environments may be made
based on design and implementation requirements.

The client computer 102 may communicate with the
server computers 112a¢ and 1125 via the communications
network 116. The communications network 116 may include
connections, such as wire, wireless communication links, or
fiber optic cables. As will be discussed with reference to
FIG. 7, server computers 112a and 1126 may include
internal components 902a and external components 904a,
respectively, and client computer 102 may include internal
components 9025 and external components 9045, respec-

10

15

20

25

30

35

40

45

50

55

60

65

8

tively. Server computers 112a and 1126 may also operate in
a cloud computing service model, such as Software as a
Service (SaaS), Platform as a Service (PaaS), or Infrastruc-
ture as a Service (laaS). Server computers 112a¢ and 1125
may also be located in a cloud computing deployment
model, such as a private cloud, community cloud, public
cloud, or hybrid cloud. Client computer 102 may be, for
example, a mobile device, a telephone, a personal digital
assistant, a netbook, a laptop computer, a tablet computer, a
desktop computer, or any type of computing devices capable
of running a program, accessing a network, and accessing a
database 114a-b. According to various implementations of
the present embodiment, the RDMA program 110a-¢ may
interact with a database 114a-b that may be embedded in
various storage devices, such as, but not limited to a com-
puter/mobile device 102, a networked server 112a, 1125, or
a cloud storage service.

According to the present embodiment, a user using a
client computer 102 or a server computers 112a, 1125 may
use the RDMA program 110a, 1105, and 110c¢ (respectively)
to allow a client computer node (e.g., client computer 102)
to perform RDMA operations on a master server (e.g., server
computer 1124) and may have the same RDMA operations
forwarded to a failover slave node (e.g., server computer
1125) such that the client computer node may failover to the
slave node using the same virtual memory address. The
RDMA {failover method is explained in more detail below
with respect to FIGS. 2-6B.

Referring now to FIG. 2, an operational flowchart illus-
trating the exemplary server-side preparation process 200 by
the RDMA program 110a-c¢ (FIG. 1) according to at least
one embodiment is depicted.

At 202, the master node and slave node map to the same
(i.e., common) virtual memory address. According to at least
one embodiment, the master node (e.g., server computer
1124 (FIG. 1)) and one or more slave nodes (e.g., server
computer 11256 (FIG. 1)) may use a known method, such as
an mmap system call in Unix-based systems, to map the
same size memory block to virtual address range (e.g.,
0x01-0x03) for all nodes (i.e., the master node and one or
more slave nodes). The master node and the slave node(s)
may allocate the same amount of memory initially. Depend-
ing on the virtual memory addresses the master node may
have been given as a result of the initial memory allocation,
the slave may mmap the slave node’s allocated memory
range to the same addresses.

Next, at 204, the master node registers virtual memory
with an RDMA capable network adapter associated with the
master node at the common virtual memory address deter-
mined at 202. According to at least one embodiment, the
Coherent Accelerator Processor Interface (CAPI) memory
manager may automatically translate the common virtual
memory addresses (e.g., 0x01) to the physical memory
addresses when the network adapter performs direct
memory access (DMA) operations.

For example, the master node’s CAP] memory manager
may register memory address 0xA9 to the common virtual
memory address Ox01 that the master and slave nodes
mapped to previously at 202.

Then, at 206, the master node generates a memory access
key. According to at least one embodiment, a device driver
running on the master node may generate the memory access
key. The device driver may use a known algorithm to
generate the access key, whereby the access key may be used
as a unique identifier. The master node may then save the
generated access key locally in a data repository, such as a
database 114a (FIG. 1).

US 9,448,901 B1

9

At 208, the master node forwards the generated key to the
one or more slave nodes (e.g., 1126 (FIG. 1)). According to
at least one embodiment, the master node may send the
access key to the slave node via a network connection for the
slave node to save locally in a data repository, such as a
database 1146 (FIG. 1).

Next, at 210, the slave node also registers memory at the
common virtual memory address determined at 202.
According to at least one embodiment, the slave node may
register physical memory using the slave node’s CAPI
memory manager to the common virtual memory address
(e.g., 0x01).

For example, the slave node’s CAPI memory manager
may translate physical memory address 0xB1 to the com-
mon virtual memory address 0x01 that the master and slave
nodes mapped to previously (i.e., at 202) using the mmap
system call. Thus, the master node and slave nodes will have
mapped their unique physical memory addresses to the same
virtual address allowing the client computer to only have to
use one virtual address for requesting RDMA operations.

Referring now to FIG. 3, an operational flowchart illus-
trating the exemplary client-side RDMA process 300 by the
RDMA program 110a-c¢ (FIG. 1) according to at least one
embodiment is depicted.

At 302, the client computer determines that an RDMA
operation will be performed. According to at least one
embodiment, an RDMA operation may be determined based
on an application or the OS on the client computer attempt-
ing to perform a memory operation (e.g., insert, update,
delete, etc.) on a remote server (e.g., master server, such as
server computer 112a (FIG. 1)).

Next, at 304, an available server is determined. According
to at least one embodiment, known node status methods may
be used to determine server/node availability. For example,
a heartbeat mechanism may be used to send data packets at
regular intervals to indicate a node is available or a query
may be made to the master node determine the available
nodes. According to at least one other embodiment, the
availability of a primary (i.e., master) node may first be
determined, and if the primary node is determined to be
unavailable, the availability of a failover secondary (i.e.,
slave) node may then be determined, etc.

Then, at 306, it is determined if the RDMA operation to
be performed is an insert operation. According to at least one
embodiment, the operation type is identified using known
methods to determine if the operation is an insert operation.

If it is determined that the operation is an insert operation
at 306, the data to be inserted is sent to the determined server
at 308. According to at least one embodiment, the insert
operation may include an argument that contains the data to
be inserted into memory via RDMA. This data may be sent
to the available server (e.g., master node or slave node)
determined at 304.

Then, at 310, the client computer will receive and store a
remote pointer from the server that was the destination for
the data sent at 308. According to at least one embodiment,
the server that was sent data to insert via RDMA may
perform the requested operation, as will be described below
with respect to FIGS. 4 and 5, and may return a pointer to
the client computer such that the client computer may
directly access the server’s memory at a later time. The
memory point sent to the client computer may be a combi-
nation of a starting memory address (e.g., 0x01 for a virtual
address range of 0x01-0x03) along with an access key (e.g.,
O0xFFF1). Thereafter, the client computer may receive the
remote pointer (i.e., starting address and access key) and

10

15

20

25

30

35

40

45

50

55

60

65

10

store the received remote pointer in a data structure, such as
a hash map, for later look up.

However, if it is determined that the RDMA operation to
be performed is not an insert at 306, the client computer will
look up a remote pointer corresponding to the memory
location the RDMA operation will use at 312. According to
at least one embodiment, when the client computer intends
to perform an RDMA operation that is not an insert opera-
tion (e.g., update, read, and delete), the operation may be
performed on a memory location that may have already had
an insert operation performed, and thus the client computer
was previously sent and stored a remote pointer as described
previously at 310. For example, if the client computer wants
to perform an update operation on an existing memory
location, the client computer may look up the remote pointer
corresponding to the existing memory location in a hash
map to retrieve the remote pointer for use in the update
operation.

Next, at 314, it is determined if the RDMA operation to
be performed is an update operation. According to at least
one embodiment, the operation type is identified using
known methods to determine if the operation is an update
operation.

If it is determined that the RDMA operation to be per-
formed is an update operation at 314, then the client com-
puter sends the remote pointer and the data associated with
the update operation to the determined available server at
316. For example, after looking up and retrieving the remote
pointer including starting memory address 0x01 and access
key OxFFF1, the client computer may send the remote
pointer and the data that will be used to update the server’s
memory to the server that was determined to be available
previously, such as the master server.

However, if it is determined that the RDMA operation to
be performed is not an update operation at 314, then the
remote pointer is sent to the determined available server at
318. According to at least one embodiment, if the RDMA
operation is not an insert or update operation (i.e., the
operation is a read or delete operation), the client computer
may send the memory pointer corresponding to the memory
location the client computer wants to read or delete along
with the operation to be performed (i.e., read or delete) to the
server that was determined to be available previously at 304.

Referring now to FIG. 4, an operational flowchart illus-
trating the exemplary master node RDMA request handling
process 400 by the RDMA program 110a-c (FIG. 1) accord-
ing to at least one embodiment is depicted.

At 402, the master node (i.e., server) receives an RDMA
request from the client computer. According to at least one
embodiment, the RDMA request (including a remote pointer
and/or data elements depending on the operation) may be
received by the master node at the master node’s network
adapter. Using known methods, the master node may check
the received access key included in the remote pointer
before allowing the client’s requested RDMA operation to
be processed.

Then, at 404 it is determined if the received RDMA
operation is an insert operation. According to at least one
embodiment, the client computer may send the master node
the data for the insert operation without a remote pointer as
described previously at 308 (FIG. 3). Thus, the master node
may identify the operation is an insert since there is a data
element and no accompanying remote pointer received from
the client computer. According to at least one other embodi-
ment, the master node may also receive an insert operator
expressly indicating the desired operation.

US 9,448,901 B1

11

If it was determined that the RDMA operation was an
insert operation at 404, then the master node allocates
memory on the master node at 406. According to at least one
embodiment, the master node may identify available
memory within the memory that was allocated as described
previously with respect to FIG. 2. Once an available
memory region has been identified, the identified memory
region may be allocated for the insert operation. For
example, memory range 0x01-0x09 may have been initially
allocated with the slave node. After the insert operation is
received from the client, the master node may determine that
0x03-0x05 is available for the insert operation, and thus
0x03-0x05 may be allocated for the insert operation.

Then, at 408, the master node performs the insert opera-
tion at the virtual memory address allocated previously.
According to at least one embodiment, the data elements
received from the client previously at 402 may be inserted
into the memory that was allocated previously at 406 using
direct memory access (DMA).

Next, at 410, the master node sends a remote pointer to the
client computer. According to at least one embodiment, the
remote pointer may include the beginning memory address
of'the memory address range related to the RDMA operation
and the access key. The access key may be the access key
generated previously at 206 (FIG. 2). The access key and the
first memory address may then be sent to, and received by,
the client computer for storage and later use as described
above at 310 (FIG. 3). For example, if the access key
generated was OXFFF1 and the memory range containing the
newly inserted data elements is 0x03-0x05, the master node
may send the client computer memory address 0x03 and
access key OxFFF1 as the remote pointer.

Next, at 412, the master node forwards the received
request to the slave node. According to at least one embodi-
ment, the master node’s network adapter may include a
bump-in-the-wire type field-programmable gate array
(FPGA) module that may be programmed to forward the
client’s request (along with any data elements) and the
remote pointer to the slave node’s network adapter over a
network connection.

According to at least one other embodiment, the firmware
of the master node’s network adapter may programmed to
forward the request and remote pointer to the slave node
before software running on the master node receives the
client’s request.

According to yet another embodiment, the master node
may forward the client’s request to software running on the
master node, and the software running on the master node
may forward the client’s original request and remote pointer
to the slave node in addition to performing the requested
operation.

Then, at 414, the slave node handles the forwarded
request by performing the same write (insert or overwrite)
operation at the same virtual memory address (e.g., 0x03).
According to at least one embodiment, the slave node’s
network adapter may perform the RDMA write operation
received from the master node at the virtual memory address
the master node forwarded to the slave node. Using the slave
node’s CAPI memory manager, the virtual memory address
sent by the master node may be translated to the physical
memory address of the slave node, and the RDMA operation
may then be performed on the slave node’s physical memory
address.

If it is determined at 404 that the received RDMA request
is not an insert operation, then it is determined if the received
RDMA request is an update operation at 416. According to
at least one embodiment, it may be determined that the

5

10

15

20

25

30

35

40

45

55

60

12

RDMA request is an update operation if a remote pointer and
at least one data element were received by the master node
at 402. According to at least one other embodiment, the
master node may also receive an update operator expressly
indicating the desired operation.

If it is determined that the RDMA request is an update
operation at 416, then it is determined if the size of the new
data element for the update is less than or equal to the size
of the old data element stored at the memory location
corresponding to the received remote pointer at 418.
According to at least one embodiment, known methods may
be used to determine the size of the received new data
element and to determine the size of the old data element
associated with the remote pointer provided by the client
computer. Then, the size the of new data element may be
compared with the size of the old data element associated
with the client-provided remote pointer.

If it is determined that the size of the new data element is
less than or equal to the size of the old data element at 418,
the new data element is written to the memory region
corresponding to the client-provided remote pointer at 420.
According to at least one embodiment, the master node may
overwrite the old data element with the new data element
using DMA in conjunction with the client-provided remote
pointer. Thereafter, the master node RDMA request handling
process 400 proceeds to 412 to forward the update request
and remote pointer to the slave node as described previously.

However, if it is determined that the size of the new data
element is not less than or equal to the size of the old data
element at 418, the old data element stored at the memory
region corresponding to the client-provided remote pointer
is removed at 422. According to at least one embodiment,
the old data element corresponding to the client-provided
remote pointer is removed using known methods, such as by
marking the memory range containing the old element as
unused, overwriting the old element with junk data, etc.
Thereafter, the master node RDMA request handling process
400 proceeds to 406 to allocate memory sufficient to store
the new data element.

If it was determined that the received RDMA request is
not an update operation at 416, it is determined if the
received RDMA request is a read operation at 424. Accord-
ing to at least one embodiment, it may be determined that the
RDMA request is a read operation based on receiving a read
operator along with the remote pointer from the client
computer at 402.

If it was determined that the received RDMA request is a
read operation at 424, then the master node retrieves the data
stored from the virtual memory address corresponding to the
client-provided remote pointer at 426. According to at least
one embodiment, the starting memory address included in
the client-provided remote pointer may be used to identify
the data element that to be read. The data element corre-
sponding to the starting memory address may then be
retrieved from memory.

Then, at 428, the master node sends the data retrieved
from the virtual address at 426 to the client computer.
According to at least one embodiment, the master node
sends the data element read from the memory location
corresponding to the client-provided remote pointer to the
client computer.

If it was determined that the received RDMA request is
not a read operation at 424, then the master node removes
the data element from the virtual address corresponding to
the client-provided remote pointer at 430. According to at
least one embodiment, if the received RDMA request was
determined to not be an insert operation (i.e., at 404), an

US 9,448,901 B1

13

update operation (i.e., at 416), or a read operation (i.e., at
424), it may be determined that the operation is a delete
operation. According to at least one other embodiment, the
client computer may send the delete operator along with the
remote pointer to the master node at 402 expressly indicat-
ing that the RDMA operation is a delete operation. Then, the
old data element corresponding to the client-provided
remote pointer may be removed using known methods, such
as by marking the memory range containing the old element
as unused, overwriting the old element with junk data, etc.
Thereafter, the master node RDMA request handling process
400 proceeds to 412 to forward the delete request and remote
pointer to the slave node as described previously.

Referring now to FIG. 5, an operational flowchart illus-
trating the exemplary slave node RDMA request handling
process 500 by the RDMA program 110a-c¢ (FIG. 1) accord-
ing to at least one embodiment is depicted.

At 502, the slave node (i.e., server) receives an RDMA
request from the client computer. According to at least one
embodiment, the RDMA request (including a remote pointer
and/or data elements depending on the operation) may be
received by the slave node at the slave node’s network
adapter. Using known methods, the slave node may check
the received access key included in the remote pointer
before allowing the client’s requested RDMA operation to
be processed.

Then, at 504 it is determined if the received RDMA
operation is an insert operation. According to at least one
embodiment, the client computer may send the slave node
the data for the insert operation without a remote pointer as
described previously at 308 (FIG. 3). Thus, the slave node
may identify the operation is an insert since there is a data
element and no accompanying remote pointer received from
the client computer. According to at least one other embodi-
ment, the slave node may also receive an insert operator
expressly indicating the desired operation.

If it was determined that the RDMA operation was an
insert operation at 504, then the slave node allocates
memory on the slave node at 506. According to at least one
embodiment, the slave node may identify available memory
within the memory that was allocated as described previ-
ously with respect to FIG. 2. Once an available memory
region has been identified, the identified memory region
may be allocated for the insert operation. For example,
memory range 0x01-0x09 may have been initially allocated
with the master node. After the insert operation is received
from the client, the slave node may determine that 0x03-
0x05 is available for the insert operation, and thus 0x03-
0x05 may be allocated for the insert operation.

Then, at 508, the slave node performs the insert operation
at the virtual memory address allocated previously. Accord-
ing to at least one embodiment, the data elements received
from the client previously at 502 may be inserted into the
memory that was allocated previously at 506 using direct
memory access (DMA).

Next, at 510, the slave node sends a remote pointer to the
client computer. According to at least one embodiment, the
remote pointer may include the beginning memory address
of'the memory address range related to the RDMA operation
and the access key. The access key may be the access key
generated previously at 206 (FIG. 2). The access key and the
first memory address may then be sent to, and received by,
the client computer for storage and later use as described
above at 310 (FIG. 3). For example, if the access key
generated was OXFFF1 and the memory range containing the
newly inserted data elements is 0x03-0x05, the slave node

10

15

20

25

30

35

40

45

50

55

60

65

14

may send the client computer memory address 0x03 and
access key OxFFF1 as the remote pointer.

If it is determined at 504 that the received RDMA request
is not an insert operation, then it is determined if the received
RDMA request is an update operation at 512. According to
at least one embodiment, it may be determined that the
RDMA request is an update operation if a remote pointer and
at least one data element were received by the slave node at
502. According to at least one other embodiment, the slave
node may also receive an update operator expressly indi-
cating the desired operation.

If it is determined that the RDMA request is an update
operation at 512, then it is determined if the size of the new
data element for the update is less than or equal to the size
of the old data element stored at the memory location
corresponding to the received remote pointer at 514.
According to at least one embodiment, known methods may
be used to determine the size of the received new data
element and to determine the size of the old data element
associated with the remote pointer provided by the client
computer. Then, the size the of new data element may be
compared with the size of the old data element associated
with the client-provided